jueves, 20 de noviembre de 2008

Video del circuito

Imagenes de nuestro circuito


















circuito electrico









Se denomina circuito eléctrico a una serie de elementos o componentes eléctricos o electrónicos, tales como resistencias, inductancias, condensadores, fuentes, y/o dispositivos electrónicos semiconductores, conectados eléctricamente entre sí con el propósito de generar, transportar o modificar señales electrónicas o eléctricas।

Partes de un circuito



Para analizar un circuito deben de conocerse los nombres de los elementos que lo forman. A continuación se indican los nombres más comunes, tomando como ejemplo el circuito mostrado en la figura 1.

  • Conector: hilo conductor de resistencia despreciable (idealmente cero) que une eléctricamente dos o más elementos.
  • Generador o fuente: elemento que produce electricidad. En el circuito de la figura 1 hay tres fuentes, una de intensidad, I, y dos de tensión, E1 y E2.
  • Nodo: punto de un circuito donde concurren varios conductores distintos. En la figura 1 se pueden ver cuatro nudos: A, B, D y E. Obsérvese que C no se ha tenido en cuenta ya que es el mismo nudo A al no existir entre ellos diferencia de potencial (VA - VC = 0).
  • Rama: conjunto de todos los elementos de un circuito comprendidos entre dos nodos consecutivos. En la figura 1 se hallan siete ramales: AB por la fuente, AB por R1, AD, AE, BD, BE y DE. Obviamente, por un ramal sólo puede circular una corriente.

jueves, 2 de octubre de 2008

Mecanismos de transmisión circular del movimiento


Mecanismos de transmisión circular del movimiento:
Tanto el movimiento de entrada como el de salida son circulares. Tienen por objeto fundamental variar la velocidad, lo que hace que varíe el par (fuerza que realizan), en algunos casos sirven para transmitir el movimiento a ciertas distancias (poleas y correa).
RUEDAS DE FRICCIÓN : Permite transmitir un movimiento giratorio entre dos ejes paralelos o perpendiculares, modificando las características de velocidad y/o sentido de giro.

Este sistema consiste en dos ruedas solidarias con sus ejes, cuyos perímetros se encuentran en contacto directo. El movimiento se transmite de una rueda a otra mediante fricción (rozamiento).

Desde el punto de vista técnico tenemos que considerar, como mínimo, 4 operadores:

  • Eje conductor: que tiene el giro que queremos transmitir. Normalmente estará unido a un motor.
  • Rueda conductora: solidaria con el eje conductor, recoge el giro de este y lo transmite por fricción (rozamiento) a la rueda conducida
  • Rueda conducida: recoge el giro de la rueda conductora mediante fricción entre ambas.
  • Eje conducido: recibe el giro de la rueda conducida y lo transmite al receptor.
POLEAS Y CORREAS :

Para transmitir el movimiento entre árboles distantes se emplean poleas y correa, correa dentada y cadena.
La transmisión por poleas y correa se realiza por fricción, empleamos la correa para unir dos ruedas que llamamos poleas, el sentido de giro de la polea de salida es el mismo que el de la motriz. Si queremos transmitir grandes potencias con la correa lisa tenemos que utilizar varias en paralelo si no patinarían. Para evitar deslizamientos se usan correas dentadas o cadenas, con estos elementos conseguimos transmitir grandes esfuerzos y una relación de transmisión exacta.


RUEDAS DENTADAS :
Se denomina engranaje o ruedas dentadas al mecanismo utilizado para transmitir potencia mecánica entre las distintas partes de una máquina. Los engranajes están formados por dos ruedas dentadas, de las cuales a la mayor se le denomina corona y la menor piñón. Un engranaje sirve para transmitir movimiento circular mediante contacto de ruedas dentadas. Una de las aplicaciones más importantes de los engranajes es la transmisión del movimiento desde el de una fuente de energía, como puede ser un ejemotor de combustión interna o un motor electrico, hasta otro eje situado a cierta distancia y que ha de realizar un trabajo. De manera que una de las ruedas está conectada por la fuente de energía y es conocido como engranaje motor y la otra está conectada al eje que debe recibir el movimiento del eje motor y que se denomina engranaje conducido. Si el sistema está compuesto de más de un par de ruedas dentadas, se denomina tren de engranajes.

La principal ventaja que tienen las transmisiones por engranaje respecto de la transmisión por poleas es que no patinan como las poleas, con lo que se obtiene exactitud en la relación de transmisión.

PIÑON CREMALLERA : Un mecanismo piñón cremallera está formado por una rueda dentada que engrana con una barra también dentada. Es un mecanismo que transforma el movimiento circular de la rueda en rectilíneo de la cremallera o viceversa. Se emplea para dar movimiento, por ejemplo, a carros de máquinas, bandeja de un lector de CD, eje principal de un taladro, etc.














TORNILLO TUERCA :

Se emplea en la conversión de un movimiento giratorio en uno lineal continuo cuando sea necesaria una fuerza de apriete o una desmultiplicación muy grandes. Esta utilidad es especialmente apreciada en dos aplicaciones prácticas:

  • Unión desmontable de objetos. Para lo que se recurre a roscas con surcos en "V" debido a que su rozamiento impide que se aflojen fácilmente. Se encuentra en casi todo tipo de objetos, bien empleando como tuerca el propio material a unir (en este caso emplea como tuerca un orificio roscado en el propio objeto) o aprisionando los objetos entre la cabeza del tornillo y la tuerca.
Empleando como tuerca el propio material se usa en sistemas de fijación de poleas, ordenadores, cerraduras, motores, electrodomésticos...

















BIELA - MANIVELA : Este mecanismo está formado por una manivela que tiene un movimiento circular y una barra llamada biela que está unida con articulaciones por un extremo a la manivela y por otro a un sistema de guiado (pistón) que describe un movimiento rectilíneo alternativo. El mecanismo es reversible, el movimiento de entrada tanto puede ser circular de la manivela como rectilíneo alternativo de la guía de la biela.
El sistema biela manivela tiene mucha importancia en los motores de explosión alternativos, así como antes también lo tuvo en la construcción de máquinas de vapor.


LEVA : El mecanismo de leva y seguidor se emplea para transformar el movimiento circular en un movimiento rectilíneo alternativo con unas características determinadas que dependen del perfil de la leva. La forma de la leva se diseña según el movimiento que se pretende para el seguidor. Para saber las características del movimiento del seguidor es necesario realizar una gráfica.
En los motores de combustión alternativos se emplean levas para efectuar la apertura y cierre de las válvulas que dejan entrar el combustible y salir los gases de la cámara de combustión.
Las levas pueden tener distintas formas, de disco, cilíndricas y de campana; la más común es la de disco.

sábado, 27 de septiembre de 2008

" Las Palancas "

¿ Qué tipo de Polipasto se debe utilizar para usar menos fuerza ?

Nosotros como grupo, llegamos a la conclusión de que es la Polea Tipo II.

Ya que mientras más Poleas, menor es la fuerza que hay que hacer y si ponemos varias poleas fijas y móviles la fuerza que ejerceremos será menor.

(F=R/2*n)



La palanca es una máquina simple que tiene como función transmitir una fuerza. Está compuesta por una barra rígida que puede girar libremente alrededor del fulcro (punto de apoyo).
Las palancas se dividen en tres tipos o géneros, dependiendo de la posición relativa del fulcro (punto de apoyo) y los puntos de aplicación de las fuerzas: potencia y resistencia. El principio de la palanca es válido indistintamente del tipo, pero el efecto y forma de uso de cada tipo de palanca cambia considerablemente.

Palanca de primer género : En la palanca de primer género, el fulcro se encuentra situado entre la potencia y la resistencia.
Ejempos de este tipo de palancas son el balancín, las tijeras, las tenazas, los alicates, o los remos.




Palanca de segundo género : En la palanca de segundo género, la resistencia se encuentra entre el fulcro y la potencia.
Ejemplos de este tipo de palanca son la carretilla y el cascanueces.





Palanca de tercer género : En la palanca de tercer género, la potencia se encuentra entre el fulcro y la resistencia.

Ejemplo de este tipo de palanca es el quitagrapas y la pinza de cejas. En el cuerpo humano, el conjunto: codo - bíceps branquial - antebrazo, también la articulación temporomandibular.

El tercer tipo se caracteriza en que la fuerza aplicada debe ser mayor que la fuerza obtenida. Este tipo de palancas se utiliza cuando lo que se requiere es ampliar la velocidad transmitida a un objeto o la distancia recorrida. Esto también se puede conseguir con la palanca de primer género situando el fulcro próximo a la fuerza aplicada.




" Las Poleas "


Es una máquina simple que sirve para transmitir una fuerza. Se trata de una rueda, generalmente maciza y acanalada en su borde, que, con el concurso de una cuerda o cable que se hace pasar por el canal se usa como elemento de transmisión para cambiar la dirección del movimiento en máquinas y mecanismos.Además, formando conjuntos —aparejos o polipastos — sirve para reducir la magnitud de la fuerza necesaria para mover un peso, variando su velocidad.


Polea Simple Fija :La manera más sencilla para utilizar una polea es anclarla en un soporte, colgar un peso en un extremo de la cuerda, y tirar del otro extremo para levantar el peso. A esta configuración se le llama polea simple fija.
La polea, permite aplicar la fuerza en una dirección más conveniente.



Polea Simple Móvil :Una forma alternativa de utilizar la polea es fijarla a la carga, fijar un extremo de la cuerda al soporte, y tirar del otro extremo para levantar a la polea y la carga. A esta configuración se le llama "polea simple móvil".
La polea simple móvil produce una ventaja mecánica: la fuerza necesaria para levantar la carga es justamente la mitad de la fuerza que habría sido requerida para levantar la carga sin la polea.











Poleas Compuestas , " Polipasto " : En un polispasto, las poleas se distribuyen en dos grupos, uno fijo y uno móvil. En cada grupo se instala un número arbitrario de poleas. La carga se une al grupo móvil.

La ventaja mecánica del polipasto puede determinarse contando el número de segmentos de cuerda que llegan a las poleas móviles que soportan la carga.